Tensor NG and Partially Massless Fields

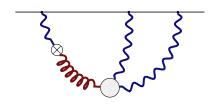
Garrett Goon

work w/

Kurt Hinterbichler, Austin Joyce

& Mark Trodden

Based On [1812.07571]



DAMTP | 26 April 2019

How do exotic fields affect primordial tensor non-Gaussianity $\langle \gamma^3 \rangle$?

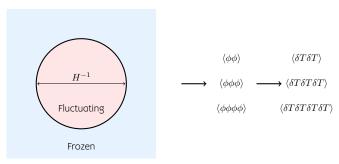
DAMTP GR Seminar [1812.07571]

non-Gaussianity review

- What are the vanilla expectations for tensor NG?
- What are these exotic fields?
- How can they imprint upon tensor NG?

Inflationary Perturbations

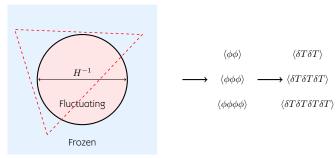
Quantum fluctuations are imprinted on superhorizon scales



- These turn into correlations in the CMB/LSS
- Information: curvature size H^{-1} , departure from perfect dS, spectrum of particles, interactions, . . .

Inflationary non-Gaussianity

NG correlations needed for detailed inflationary physics



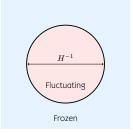
• Correlations described by prob. distribution functional

$$\mathcal{P}[\phi(\mathbf{x})] \sim \exp\left[-\frac{1}{2} \int G_2(\mathbf{x}_i) \phi(\mathbf{x}_1) \phi(\mathbf{x}_2) - \frac{1}{3!} \int G_3(\mathbf{x}_i) \phi(\mathbf{x}_1) \phi(\mathbf{x}_2) \phi(\mathbf{x}_3) + \ldots\right]$$

• NG determined by $\mathcal{L}_{\mathrm{interactions}}$, powerful discriminator between models, since $\mathcal{L}_{\mathrm{free}}$ essentially the same

Which Correlations Are Important?

$$S = \int d^4x \sqrt{-g} \left(\frac{M_p^2}{2} R - \frac{1}{2} (\nabla \phi)^2 - V(\phi) - \frac{1}{\Lambda^4} (\nabla \phi)^4 + \mathcal{L}_{\text{other}}(\sigma) + \dots \right)$$



Graviton, Inflaton frozen

Other fields evolve, generically

Care about Metric and Inflaton perturbations $(g_{\mu\nu}, \phi) \rightarrow (\gamma_{ij}, \zeta)$

$$ds^{2} = a(\tau)^{2} \left(-d\tau^{2} + e^{2\zeta} \left(\delta_{ij} + \gamma_{ij} \right) dx^{i} dx^{j} \right)$$

 ζ, γ_{ij} determine temperature and polarization CMB fluctuations Fields σ typically studied w/r/t influence on ζ, γ_{ij}

Recent push to understand σ 's imprints upon ζ, γ_{ij}

Cosmological Collider Physics

Nima Arkani-Hamed and Juan Maldacena

Non-Gaussianity as a Particle Detector

Hayden Lee, ★ Daniel Baumann, ★, ♠ and Guilherme L. Pimentel ★, ♠

Partially Massless Fields During Inflation

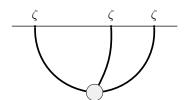
Daniel Baumann, Garrett Goon 1,2 Hayden Lee, 3,4 and Guilherme L. Pimentel 1

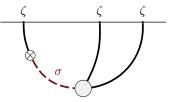
The Cosmological Bootstrap:

Inflationary Correlators from Symmetries and Singularities

Nima Arkani-Hamed¹, Daniel Baumann², Hayden Lee³, and Guilherme L. Pimentel²

Sketch of previous work:





Two cases for $\langle \zeta^3 \rangle$:

- Left: Single Field Inflation
- Right: Inflation + another field σ with $m \sim H$

What are the signatures of the right scenario?

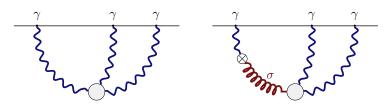
- How to distinguish σ effects from self-interactions?
- How are m, s encoded in $\langle \zeta^3 \rangle$?
- How big can the induced NG be?

gg399@cam.ac.uk

Answers found in [1503.08043,1607.03735]

Our Work

Our Setup:



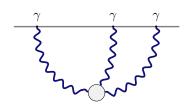
Repeat a similar construction for tensor NG around pprox dS.

Why this is interesting:

- ullet Left scenario extremely constrained in perfect dS
- \bullet Light spinning dS fields have novel properties, no flat analogue

Recent work on probing $\langle \gamma^3 \rangle$ with LISA and pulsar timing arrays [Bartolo et al., 1806.02819] [Tsuneto et al., 1812.10615] [Dimastrogiovanni et al., 1810.08866]

Vanilla scenario for $\langle \gamma^3 \rangle$:



 $\langle \gamma^3 \rangle$ extremely constrained when $S=S[g_{\mu\nu},\phi]$ and pprox dS

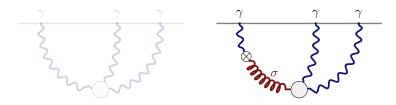
$$S = \int d^4x \sqrt{-g} \left(\frac{M_p^2}{2} R + \mathcal{L}(\phi, g_{\mu\nu}, R) + R^2 + \frac{1}{\Lambda^{2n}} R^{2+n} \dots \right)$$

Only two shapes for $\langle \gamma^3 \rangle$ [Maldacena et al.,1104.2846]

Everything above is redundant with Einstein-Hilbert & $W^3_{\mu\nu\rho\sigma}$

Restricted form of GR shapes is a discriminator

Cosmological Collider Physics for $\langle \gamma^3 \rangle$:



Include a spin-s field σ of mass m.

$$S \sim \int d^4x \sqrt{-g} \left(\dots + (\partial \sigma)^2 - m^2 \sigma^2 + \sigma \gamma + \sigma \gamma^2 + \dots \right)$$

Some comments:

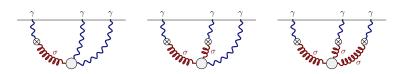
• For the mixing to happen, $s \ge 2$

gg399@cam.ac.uk

• Expect strongest effects from $m^2 \approx 2H^2$ (explained later)

Results

Results for Shapes:



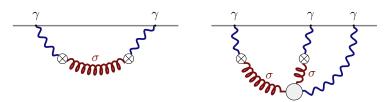
There are many types of vertices one may add.

End result: middle diagrams generate five distinct shapes

 σ causes some NG shapes to be non-zero doesn't just change $\langle \gamma^3 \rangle_{\rm GR} \to \langle \gamma^3 \rangle_{\rm GR} \times (1+\epsilon)$

New shapes distinguish this from the vanilla scenario

Results for Sizes:

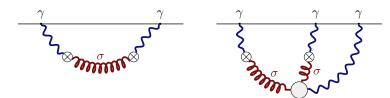


Size of $\langle \gamma^3 \rangle$ depends on mixing \otimes and vertex \bigcirc

$$S \sim \int d^4x \sqrt{-g} \left(\dots + \lambda \sigma \gamma + \frac{\partial^n}{\Lambda^{n-4}} \sigma^2 \gamma + \dots \right)$$

- ullet λ should be small to not affect tensor power spectrum P_γ
- Λ should be large to avoid strong coupling ($\Lambda\gg H$)

Results for Sizes:



Compare to the Einstein-Hilbert result

In most optimistic regimes, the NG can be much larger:

$$\frac{\langle \gamma^3 \rangle_{\rm GR}'}{\langle \gamma^2 \rangle'^2} \sim 1 \; , \quad \frac{\langle \gamma^3 \rangle_\sigma'}{\langle \gamma^2 \rangle'^2} \lesssim \frac{M_p}{H} \; , \quad \frac{M_p}{H} \gtrsim 10^5 \quad \text{[PLANCK,1807.06211]}$$

(The $W^3_{\mu\nu\rho\sigma}$ operator can also produce ${\langle\gamma^3\rangle'\over\langle\gamma^2\rangle'^2}\lesssim {M_p\over H}$)

Tensor power spectrum $\langle \gamma^2 \rangle$ negligibly affected

Main Messages

- Additional fields can generate new shapes for $\langle \gamma^3 \rangle$
- Tensor NG can be much larger than vanilla scenario
- Leaves $\langle \gamma^2 \rangle$, $\langle \zeta^2 \rangle$ and $\langle \zeta^3 \rangle$ unaffected

Details

What to Compute: Equal Time Correlators

Cosmological correlators are evaluated at equal times

More similar to Quantum Mechanics than S-matrix

$$\Psi[q(t)] \longrightarrow \langle \hat{q}(t)^n \rangle = \int dq \, |\Psi[q(t)]|^2 q^n$$

Various ways to compute "in-in" correlators. We use $\Psi[\bar{\varphi}(\mathbf{k},t)]$:

$$\Psi[\bar{\varphi}(\mathbf{k},t)] \longrightarrow \langle \hat{\varphi}(\mathbf{k}_1,t) \dots \hat{\varphi}(\mathbf{k}_n,t) \rangle = \int \mathcal{D}\bar{\varphi} |\Psi[\bar{\varphi}(\mathbf{k},t)|^2 \bar{\varphi}(\mathbf{k}_1,t) \dots \bar{\varphi}(\mathbf{k}_n,t) ...$$

"Wavefunction of the universe"

Calculating and Using Ψ

 Ψ is calculated semiclassically

$$\Psi[\bar{\varphi}(\mathbf{k}, t_{\star})] = \int_{\text{vac.}}^{\bar{\varphi}} \mathcal{D}\varphi \, e^{iS[\varphi]} \approx \exp\left(iS_{\text{cl.}}[\varphi_{\text{cl}}[\bar{\varphi}]]\right)$$

 $arphi_{
m cl}$ is the classical solution equal to $ar{arphi}$ at $t=t_{\star}$

$$\Psi[\bar{\varphi}(\mathbf{k}, t_{\star})] = \exp\left[-\frac{1}{2} \int \bar{\varphi}^2 \langle \mathcal{O}^2 \rangle - \frac{1}{3!} \int \bar{\varphi}^3 \langle \mathcal{O}^3 \rangle - \dots\right]$$

Equal-time correlators built from $\langle \mathcal{O}^n \rangle$'s

$$\langle \hat{\varphi}(\mathbf{k}_{1}, t_{\star}) \hat{\varphi}(\mathbf{k}_{2}, t_{\star}) \rangle \sim \int \mathcal{D}\bar{\varphi} |\Psi|^{2} \bar{\varphi}^{2} \sim \frac{1}{\operatorname{Re} \langle \mathcal{O}^{2} \rangle}$$
$$\langle \hat{\varphi}(\mathbf{k}_{1}, t_{\star}) \hat{\varphi}(\mathbf{k}_{2}, t_{\star}) \hat{\varphi}(\mathbf{k}_{3}, t_{\star}) \rangle \sim \int \mathcal{D}\bar{\varphi} |\Psi|^{2} \bar{\varphi}^{3} \sim \frac{\operatorname{Re} \langle \mathcal{O}^{3} \rangle}{\operatorname{Re} \langle \mathcal{O}^{2} \rangle^{3}}$$

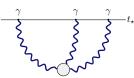
Diagrams and On-Shell Interactions

Our focus is on the cubic coefficients in Ψ

These are cubic interactions evaluated on-shell

Example: cubic γ coefficient

$$\ln \Psi \supset -\frac{1}{3!} \int \, \bar{\gamma}^3 \langle T^3 \rangle$$



Above Diagram:

- Take cubic action $S_3[\gamma]$
- Set $\gamma \longrightarrow \gamma_{\rm cl}, \, \gamma$ obeys EOM and $\gamma_{\rm cl}(t_\star) = \bar{\gamma}$
- Integrate over all space, and time up to $t=t_{\star}$
- $S_3[\gamma_{\rm cl}] = -\frac{1}{3!} \int \bar{\gamma}^3 \langle T^3 \rangle$

Finding on-shell cubic interactions is bulk of work

An Aside: Ψ and AdS/CFT

 Ψ is the central object in the Holographic dictionary

$$\Psi_{dS}[\bar{\varphi}] \longleftrightarrow Z_{AdS}[\bar{\varphi}]$$

Notation and form are the same:

$$\Psi[\bar{\varphi}(\mathbf{k}, t_{\star})] = \exp\left[-\frac{1}{2} \int \bar{\varphi}^2 \langle \mathcal{O}^2 \rangle - \frac{1}{3!} \int \bar{\varphi}^3 \langle \mathcal{O}^3 \rangle - \ldots\right]$$

But the use is different

AdS/CFT
$$\frac{\delta^3 Z}{\delta \bar{\varphi}^3} \sim \langle \mathcal{O}^3 \rangle$$

Cosmology $\int \mathcal{D}\bar{\varphi} |\Psi|^2 \bar{\varphi}^3 \sim \frac{1}{\operatorname{Re} \langle \mathcal{O}^2 \rangle^3} \operatorname{Re} \langle \mathcal{O}^3 \rangle$

Many AdS/CFT techniques apply for non-Gaussianities

Steps of the Calculation

- ullet Find on-shell cubic interactions between γ and σ
- Calculate coefficients $\langle \Sigma^3 \rangle$, $\langle T\Sigma^2 \rangle$, $\langle \Sigma T^2 \rangle$
- Construct $\langle \gamma^3 \rangle$ with these building blocks (and $\langle T\Sigma \rangle$)

$$\Psi[\bar{\gamma}, \bar{\sigma}] \sim \exp\left[-\frac{1}{2}\gamma^2 \langle T^2 \rangle - \frac{1}{2}\sigma^2 \langle \Sigma^2 \rangle - \gamma\sigma \langle T\Sigma \rangle - \frac{1}{2}\gamma\sigma^2 \langle T\Sigma^2 \rangle + \ldots\right]$$

What is an interesting choice of σ ?

• σ must have spin ≥ 2

- ullet Lighter σ s expected to give bigger signal
- ullet Lightest non-massless σ on dS very non-trivial. Our focus

Take mmm to be a Spin-2 Field

"Higuchi Bound": Spin-2 fields must have $m^2 \ge 2H^2$

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \nabla^{\alpha} \sigma^{\mu\nu} \nabla_{\alpha} \sigma_{\mu\nu} + \frac{1}{2} \nabla^{\alpha} \sigma \nabla_{\alpha} \sigma + \dots \right.$$
$$- \left(H^2 + \frac{m^2}{2} \right) \sigma_{\mu\nu} \sigma^{\mu\nu} - \frac{1}{2} \left(H^2 - m^2 \right) \sigma^2 \right)$$

Otherwise, some components acquire wrong-sign kinetic terms

Suggests looking at $m^2 = 2H^2$. Very special point!

Partially Massless Fields

Spin-2 with $m^2=2H^2$ has 4 DOF, $m^2>2H^2$ has 5 σ has a gauge symmetry at PM point

$$\sigma_{\mu\nu} \to \sigma_{\mu\nu} + \left(\nabla_{\mu}\nabla_{\nu} + H^2 \bar{g}_{\mu\nu}\right) \alpha(x^{\mu})$$

Special to dS, no flat analogue. A smoking gun?

Technical advantage: PM mode functions nice, $\sigma \sim \tau e^{ik\tau}$ Similar stories exist for higher spin fields

Partially Massless Fields: Some Background

The dream: a non-linear PM theory would make the smallness of Λ technically natural. Λ tied to a gauge symmetry.

$$\sigma_{\mu\nu} \to \sigma_{\mu\nu} + \left(\nabla_{\mu}\nabla_{\nu} + H^2\bar{g}_{\mu\nu}\right)\alpha(x^{\mu})$$

The difficulties: constructing interactions challenging

- No-Go: isolated spin-2 PM field can't self-interact consistently, quartic order obstruction [de Rham et al, 1302.0025]
- ullet Require additional fields for consistency. Completion \sim Vasiliev?
- ullet Unclear how to extend away from dS

gg399@cam.ac.uk

Constructing consistent $\gamma-\sigma$ interactions large portion of project

Gauge-Invariant Interactions

Main Point: going from linear to non-linear theory is hard!

Consider building GR from similar starting point

$$\mathcal{L} \sim (\partial h)^2$$
, $h_{\mu\nu} \to h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Adding some $\sim \partial^2 h^3$ terms makes system non gauge-invariant Need to simultaneously also alter the gauge symmetry

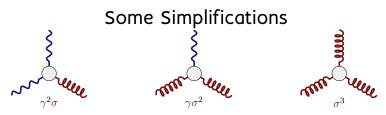
$$h_{\mu\nu} \to h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} + \mathcal{O}\left(\partial h\xi\right) , \quad \mathcal{L} \sim (\partial h)^{2} + \mathcal{O}\left(\partial^{2}h^{3}\right)$$

Eventually, everything is repackaged into GR

$$g_{\mu\nu} \to \frac{\partial x'^{\alpha}}{\partial x^{\mu}} \frac{\partial x'^{\beta}}{\partial x^{\nu}} g_{\alpha\beta} , \quad S \sim \int d^4x \sqrt{-g} R$$

But pretty difficult to get there without knowing answer!

No guarantee system will close, in general



Find interactions consistent with both σ/γ gauge symmetries

A few simplifications:

- Only need cubic interactions, not whole non-linear theory
- $\langle \gamma^3 \rangle$ computations only require on-shell interactions

E.g., for massless spin-2 $(\gamma_{ij}/h_{\mu\nu})$ we can use

$$\Box h_{\mu\nu} = 2H^2 h_{\mu\nu} \ , \quad \nabla^{\mu} h_{\mu\nu} = 0 \ , \quad h^{\mu}{}_{\mu} = 0$$

Interaction Simplifications

Example: GR has 33 cubic terms, off-shell:

$$S = \frac{M_p^2}{2} \int d^4x \sqrt{-g} \left(R - 6H^2 \right) \supset$$

 $247^6 \ln_a^{(6)} \ln_a^{(6$

But only 3 after imposing $h^{\mu}_{\ \mu}=\nabla^{\mu}h_{\mu\nu}=0$ and $\Box h_{\mu\nu}=2H^2$

$$\frac{3}{4}\,H^2\,Mp^2\,hh^{\frac{1}{a}}{}^c\,hh^{1ab}\,hh^{1}{}_{bc} + \frac{1}{8}\,Mp^2\,hh^{1ab}\,\triangledown_a hh^{1cd}\,\triangledown_b hh^{1}{}_{cd} + \frac{1}{4}\,Mp^2\,hh^{1ab}\,\triangledown_c hh^{1}{}_{bd}\,\triangledown^d hh^{1}{}_{a}^{c}$$

Obviously better if we can work on-shell everywhere

On-Shell Gauge Invariance

Gauge invariance conditions simplify on-shell

$$h_{\mu\nu} \to h_{\mu\nu} + \delta_0 h_{\mu\nu} + \delta_1 h_{\mu\nu} + \dots , \quad S[h] = S_2[h] + S_3[h] + \dots$$

Gauge invariance means

$$0 = \int \delta_0 h_{\mu\nu} \frac{\delta S_2}{\delta h_{\mu\nu}} , \quad 0 = \int \delta_0 h_{\mu\nu} \frac{\delta S_3}{\delta h_{\mu\nu}} + \delta_1 h_{\mu\nu} \frac{\delta S_2}{\delta h_{\mu\nu}} , \quad \dots$$

But $\frac{\delta S_2}{\delta h_{\mu\nu}}=0$ on-shell, so only $\delta_0 h_{\mu\nu}$ is needed

$$\int \delta_0 h_{\mu\nu} \frac{\delta S_3}{\delta h_{\mu\nu}} \Big|_{h=\text{linear solution}} \cong 0$$

Equality up to total derivatives and on-shell conditions

[Variational Derivative, Going On-Shell] $\neq 0$

Working on-shell isn't entirely painless. Finding TD's trickier

E.g., take a massless scalar $\Box \varphi = 0$. Off-shell we have:

$$\mathcal{L}_{\text{TD}} = \nabla^{\mu} \left(\varphi^{2} \nabla_{\mu} \varphi \right) = \varphi^{2} \Box \varphi + 2\varphi (\nabla \varphi)^{2} \implies \frac{\delta S_{\text{TD}}}{\delta \varphi} = 0$$

But if we go on-shell and impose $\Box \varphi = 0$, then:

$$\mathcal{L}_{\mathrm{TD}}^{\mathrm{on-shell}} = 2\varphi(\nabla\varphi)^2 \implies \frac{\delta S_{\mathrm{TD}}^{\mathrm{on-shell}}}{\delta\varphi} \neq 0$$

So, the problem is really to solve

$$\int \delta_0 h_{\mu\nu} \frac{\delta S_3}{\delta h_{\mu\nu}} \Big|_{h=\text{linear solution}} \cong 0 + \text{secret total derivatives}$$

We can ennumerate the relevant secret TD's

Strategy: Build Basis of Interactions

Basis of independent on-shell cubic terms is relatively small.

gg399@cam.ac.uk

$$\mathcal{L}_{3}[\sigma] = a_{1}\sigma^{\mu}{}_{\nu}\sigma^{\nu}{}_{\sigma}\sigma^{\sigma}{}_{\mu}$$

$$+ a_{2}\sigma^{\rho\sigma}\nabla_{\rho}\sigma^{\mu\nu}\nabla_{\sigma}\sigma_{\mu\nu} + a_{3}\sigma^{\mu\rho}\nabla_{\nu}\sigma^{\sigma}{}_{\rho}\nabla_{\sigma}\sigma^{\nu}{}_{\mu}$$

$$+ a_{4}\nabla_{\mu}\sigma^{\kappa\rho}\nabla_{\nu}\sigma^{\sigma}{}_{\kappa}\nabla_{(\rho}\nabla_{\sigma)}\sigma^{\mu\nu}$$

$$+ a_{5}\nabla_{\mu}\nabla_{\nu}\sigma^{\lambda\kappa}\nabla_{\rho}\nabla_{\sigma}\sigma^{\mu\nu}\nabla_{\lambda}\nabla_{\kappa}\sigma^{\rho\sigma}$$

Imposing PM gauge invariance leads to conditions on a_i 's

$$a_1 = -16a_5H^6 - 10a_4H^4 + 3a_3H^2,$$

$$a_2 = -6a_5H^4 - 3a_3H^2 + \frac{1}{2}a_3,$$

Similar bases for $\gamma \sigma^2$ and $\gamma^2 \sigma$ interactions

We (mostly) reproduce interactions previously derived using embedding space [1203.6578]

Computing $\langle \gamma^3 \rangle$: Mixing Required

Cubic coefficients follow easily from on-shell actions

 σ and γ need to linearly mix, for σ to affect $\langle \gamma^3 \rangle,\, \langle T\Sigma \rangle \neq 0$

$$\Psi[\bar{\gamma}, \bar{\sigma}] \sim \exp\left[-\frac{1}{2}\gamma^2 \langle T^2 \rangle - \frac{1}{2}\sigma^2 \langle \Sigma^2 \rangle - \gamma\sigma \langle T\Sigma \rangle - \frac{1}{2}\gamma^2\sigma \langle T^2\Sigma \rangle + \ldots\right]$$
$$\langle \gamma^3 \rangle \sim \frac{1}{\operatorname{Re}\langle T^2 \rangle^3} \frac{\operatorname{Re}\langle T\Sigma \rangle}{\operatorname{Re}\langle \Sigma^2 \rangle} \operatorname{Re}\langle T^2\Sigma \rangle$$

Impossible in perfect dS. Consistent W/ [Maldacena et al.,1104.2846]

But inflation isn't perfect dS. Minimally violent $\langle T\Sigma \rangle$:

$$\langle T_{\mathbf{k}} \Sigma_{-\mathbf{k}} \rangle' \propto \varepsilon k^2$$

Preserves max. possible dS symmetries while allowing mixing

Result: Using $\langle T\Sigma \rangle$, five shapes for $\langle \gamma^3 \rangle$ are found (Explicit expressions aren't very illuminating)

Ambiguities: Integration by Parts

Something Surprising: Integrations by Parts matter.

E.g., massless scalar φ on dS

$$\begin{split} S_1[\varphi] &= \int \mathrm{d}^4 x \sqrt{-g} \, \left(-\frac{1}{2} (\nabla \varphi)^2 + \frac{\lambda}{2} \varphi^2 \Box \varphi \right) \\ S_2[\varphi] &= \int \mathrm{d}^4 x \sqrt{-g} \, \left(-\frac{1}{2} (\nabla \varphi)^2 - \lambda \varphi (\nabla \varphi)^2 \right) \\ &= S_1[\varphi] + \int_{\tau = \tau_\star} \mathrm{d}^3 x \sqrt{h} \, \frac{\lambda}{2} n^\mu \varphi^2 \nabla_\mu \varphi \\ \text{Calculate } \langle \varphi^3 \rangle \text{ using both } S_1[\varphi] \text{ and } S_2[\varphi] \end{split}$$

$$\langle \varphi_{\mathbf{k}_1} \varphi_{\mathbf{k}_2} \varphi_{\mathbf{k}_3} \rangle_{S_1}' = 0$$

$$\langle \varphi_{\mathbf{k}_1} \varphi_{\mathbf{k}_2} \varphi_{\mathbf{k}_3} \rangle_{S_2}' = \lambda \sum_{i \neq j} P_{\varphi}(k_i) P_{\varphi}(k_j)$$

Differ by Local non-Gaussianity

Ambiguities: Integration by Parts

Similar results for σ and γ

Very general. Another example:

$$\mathcal{L}_{GB} = R^2 - 4R_{\mu\nu}^2 + R_{\mu\nu\rho\sigma}^2$$

 $\mathcal{L}_{\mathrm{GB}}$ is a TD in 4D, but generates NG unless boundary term added

Boundary terms important. How to choose them in general?

Variational principle can select one, sometimes

e.g., GHY
$$S_{\rm GR} \sim \int_{\mathcal{M}} \sqrt{-g} R \pm \int_{\partial \mathcal{M}} \sqrt{h} K$$

But not always:

$$S_{W^3} \sim \int_{\mathcal{M}} \sqrt{-g} W_{\mu\nu\rho\sigma}^3 + \int_{\partial\mathcal{M}} \sqrt{h} \times (?)$$

Ambiguities: Integration by Parts

Some good news: ambiguous parts not entirely arbitrary $\text{Integrations by parts} \longleftrightarrow \text{Local Field Redefinitions}$

$$\mathcal{L}[\varphi] \to \mathcal{L}[\varphi] + \nabla_{\mu} J^{\mu}[\varphi] \iff \varphi(\mathbf{x}) \to \varphi(\mathbf{x}) + \lambda \varphi(\mathbf{x})^2$$

E.g., take massless φ , add all $\mathcal{O}(\varphi^3)$ boundary terms up to $\mathcal{O}(\nabla^5)$

$$\langle \varphi_{\mathbf{k}_1} \varphi_{\mathbf{k}_2} \varphi_{\mathbf{k}_3} \rangle'_{\mathcal{L}+\text{total derivatives}} = \langle \varphi_{\mathbf{k}_1} \varphi_{\mathbf{k}_2} \varphi_{\mathbf{k}_3} \rangle'_{\mathcal{L}} + \lambda \sum_{i \neq j} P_{\varphi}(k_i) P_{\varphi}(k_j)$$

Known in holography?

Conclusions

Conclusions

Results

- Exotic dS fields can create new, large $\langle \gamma^3 \rangle$ shapes, while leaving $\langle \gamma^2 \rangle$, $\langle \zeta^2 \rangle$ and $\langle \zeta^3 \rangle$ unaffected
- ullet Biggest challenge is consistently coupling σ to γ on dS
- Need to move slightly away from dS to imprint on $\langle \gamma^3 \rangle$

Future Work

- Consistent couplings at higher order/FRW? New ingredients?
- Improved understanding of IBP/Boundary Term subtleties
- Shapes different from GR. Quantifying how different? Also different from other mechanisms?

Thank you!