# Superluminality, Black Holes and EFT

Garrett Goon

Universiteit van Amsterdam

October 3, 2016

with Kurt Hinterbichler (1609.00723)



- Goal: Understand superluminality within EFT framework.
- Any sensible theory should avoid superluminality,  $c_s^{\text{group}} > 1$ .
- However, interesting superluminal Effective Field Theories exist.
- E.g. speculative modified gravity models, but also QED.
- A natural test distinguishes the superluminality in our two examples.
- Along the way, we will see some neat black hole physics

### DGP, Massive GR and Galileons

- Late time acceleration very exciting (and confusing).
- Generated an industry of GR modifications.
- Two such theories closely connected: DGP and massive GR (dRGT).



- New light dof  $\pi(x)$  appears, needs to be screened in some way.
- Same  $\pi(x)$ , same screening in both theories.
- Screening mechanism leads to superluminalities.

Garrett Goon (Amsterdam)

### Cubic Galileon: The Good News

- Cubic Galileon:  $\mathcal{L} = -\frac{1}{2}(\partial \pi)^2 \frac{1}{\Lambda^3}(\partial \pi)^2 \Box \pi + \frac{\pi}{M_{ol}}T^{\mu}{}_{\mu}$ .
- $\pi(x) \rightarrow \pi(x) + c + b_{\mu}x^{\mu}$  (Nicolis, Rattazzi, Trincherini 2008)

$$V \sim \left(\frac{r}{r_V}\right)^{3/2} V_N \qquad V_N \sim \frac{r_s}{r}$$

$$r_V$$

- Non-linearities suppress potential V at  $r < r_V$ . "Vainshtein."
- Fifth force shuts off below  $r_V = \Lambda^{-1} \left( M/M_{pl} \right)^{1/3}$ .

• For us,  $\Lambda^{-1}\sim 10^3 km,~r_V^\odot\sim 10^{15} km~(\gg r_{\rm Solar~System}\sim 10^9 km).$ 

### Cubic Galileon: The Bad News



- The non-linearities needed for screening also induce superluminality.
- Radially moving perturbations have  $c_s > 1$ .
- Travel along  $\tilde{g}_{\mu\nu} = \eta_{\mu\nu} \frac{4}{\Lambda^4}\eta_{\mu\nu}\partial^2\bar{\pi} + \frac{4}{\Lambda^3}\partial_{\mu}\partial_{\nu}\bar{\pi}$ . Lightcone widens.

# Comparisons?

- How bad is this?
- Each theory is highly speculative.
- Are there any theories we trust with similar issues?

### Comparisons?

- How bad is this?
- Each theory is highly speculative.
- Are there any theories we trust with similar issues?
- QED! (Drummond and Hathrell, 1979)
- Similar effect occurs for photon propagation in QED near black holes.
- Due to *e<sup>-</sup>* induced non-minimal photon-gravity couplings.

### The Drummond-Hathrell EFT



- If  $e^{-1}$ 's aren't important, work with the EFT.
- Any term with  $F_{\mu\nu}$  can alter photon propagation.
- Different behaviors arise on different backgrounds.

### Ex: Constant Magnetic Fields (Adler, 1971)

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu}^2 + \frac{7}{90(4\pi)^2 m^4} F^{\mu}{}_{\nu} F^{\nu}{}_{\rho} F^{\rho}{}_{\sigma} F^{\sigma}{}_{\mu} - \frac{1}{36(4\pi)^2 m^4} \left(F_{\mu\nu} F^{\mu\nu}\right)^2 + \dots$$

For example, photons travel more slowly in strong magnetic fields.

- Geometric optics:  $c_s \sim 1 e^4 B^4 / m^4$ . Lightcone narrows,  $\tilde{g}_{\mu\nu} \neq \eta_{\mu\nu}$ .
- \$\mathcal{O}\$ (10%) effect in pulsars.
- Virtual electrons act as an effective medium. Vacuum effect.
- Similar conclusions hold for arbitrary EM backgrounds (Daniels and Shore, 1993).

### The Drummond-Hathrell Problem (1979)



- Same analysis: Photon is "superluminal" near black holes.
- Lightcone widens:  $\tilde{g}_{\mu\nu} \approx \bar{g}_{\mu\nu} + \frac{8c_2e^2}{m^2} \bar{R}_{\mu\rho\nu\sigma} f^{\rho} f^{\sigma}$ .
- Occurs for radially polarized  $\gamma$  propagating in angular directions.

• Other polarization is subluminal. Radially propagating  $\gamma$ 's are luminal.

### EFT Artifact?

- Longstanding oddity. Many have looked into this, varying conclusions.
- (Shore, Hollowood) prominent, explore high energy limit.
- Intuition: QED superluminality should be an artifact of EFT.
- How can this be fake, while constant B case is real?
- We'd like a detailed understanding of how QED "protects" itself.
- Important to understand all approximations made in EFT.

# Effective Field Theory (EFT) and QED

- General idea: mimic short distance physics by an effective description.
- Our case:  $e^{-1}$ 's not so relevant for  $\gamma$  propagation, BHs.
- Remove them. Fewer fields: just  $A_{\mu}$  and  $g_{\mu\nu}$ .
- Technically easier to work with effective description.
- Allows for efficient approximation scheme.

### Building an EFT: Matching

- How do we build the EFT?
- Method 1: Match calculations in full and effective theories.



• Light by light scattering famous example. RFF more relevant for us.

### Building an EFT: Integrating Out

Method 2: Integrate out the e<sup>-</sup>.

$$\exp iS_{\rm EFT}[A_{\mu}, g_{\mu\nu}] = \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \, \exp iS_{\rm QED}[A_{\mu}, g_{\mu\nu}, \psi, \bar{\psi}]$$

- QED ideal for functional methods  $S_{\text{EFT}} \supset \text{Tr } \ln (i \not D m)$ .
- In principle, this just splits the calculation into two steps.

$$\begin{aligned} \langle A_{\mu}(x)A_{\nu}(y)\rangle &= \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A_{\mu}\mathcal{D}g_{\mu\nu}\,e^{iS_{\text{QED}}}A_{\mu}(x)A_{\nu}(y) \\ &= \int \mathcal{D}A_{\mu}\mathcal{D}g_{\mu\nu}\,e^{iS_{\text{EFT}}}A_{\mu}(x)A_{\nu}(y) \end{aligned}$$

• No information would be lost if we could do the above path integral.

• However, we can't. Necessarily make approximations.

### EFT: Approximations and Validity

• Can't keep all terms in  $S_{\rm EFT}$ . Must truncate.

$$\mathcal{L} = M_{pl}^2 R - \frac{1}{4e^2} F_{\mu\nu}^2 + \frac{c_1}{m^4} F_{\mu\nu}^4 + \frac{c_2}{m^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$$

- Drop terms higher order in  $R/m^2$ ,  $F/m^2$ .
- Setup must keep these terms small. Otherwise, EFT is invalid.
- Energies, curvatures, field strengths  $\ll m$ . Lengths  $\gg m^{-1}$ .

# EFT Criteria for Superluminality: QED

- Natural criteria: compare distance advance to *m*<sup>-1</sup>.
- Race a *minimally* coupled photon against QED photon.
- Solve geodesic equation for  $\tilde{g}_{\mu\nu}$ .
- Shapiro delay cancels.

• 
$$\Delta d \lesssim m^{-1} \left( \frac{e^2}{mr_s} \right) \ll m^{-1}$$
. Tiny.

•  $\Delta d \sim 10^{-31}$  meters for  $e^-$ ,  $M_\odot$  BH.

$$-\frac{1}{4e^2}F_{\mu\nu}^2 + \frac{c_2}{m^2}R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$$

#### EFT Criteria for Superluminality: Galileons

• Cubic Galileon: 
$$\mathcal{L} = -rac{1}{2}(\partial\pi)^2 - rac{1}{\Lambda^3}(\partial\pi)^2\Box\pi + rac{\pi}{M_{ol}}T^{\mu}{}_{\mu}$$



• Now,  $\Lambda^{-1}$  is the cutoff. Same role as  $m^{-1}$  in QED.

- Race  $\delta \pi$  against a photon from  $r_V$  to infinity.
- Macroscopic superluminality  $\Delta d \sim r_V \sim \Lambda^{-1} (M/M_{pl})^{1/3} \gg \Lambda^{-1}$ .

#### Recap and Other Setups

• QED, modified GR qualitatively different in simplest scenario.

• 
$$\Delta d_{
m QED} \ll m^{-1}$$
 while  $\Delta d_{
m galileon} \gg \Lambda^{-1}$ .

- QED superluminality not "real", apparently. Similar to EFT ghosts.
- What about other QED setups?
- Let's go to extremes, see what happens.
- Issues should be resolved within EFT. Stick to low energies.

### Two Failed Attempts: Small black holes and large $N_f$ .

• QED photon wins by 
$$\Delta d \lesssim m^{-1} \left( rac{e^2}{m r_s} 
ight).$$

- Tiny black holes:
  - Make denominator small,  $r_s \ll m^{-1}$ .
  - But, curvatures  $\mathcal{O}(1/r_s^2)$ ,  $\implies R_{\mu\nu\rho\sigma}/m^2 \gg 1$ . EFT breaks down.
- Large number of species, N<sub>f</sub>:

• Now, 
$$\Delta d \approx m^{-1} \left( \frac{N_f e^2}{m r_s} \right)$$
.

- Make numerator large,  $N_f e^2 \gg 1$ .
- Physics becomes non-perturbative, can't calculate.



$$\Delta d \approx m^{-1} N_{\rm BH} \left( \frac{e^2}{m r_s} \right)$$



- Amplify using many black holes.
- This setup is our main focus.
- Pairs of black holes prevent curving.
- Note: Absurd. Shows how hard  $\Delta d > m^{-1}$  is.
- $N_{\rm BH} \sim \frac{mr_s}{e^2} \sim 10^{17}$  for  $e^-$ ,  $M_\odot$  BH.

$$\Delta d \approx m^{-1} N_{\rm BH} \left(\frac{e^2}{mr_s}\right)$$



- Amplify using many black holes.
- This setup is our main focus.
- Pairs of black holes prevent curving.
- Note: Absurd. Shows how hard  $\Delta d > m^{-1}$  is.
- $N_{\rm BH} \sim \frac{mr_s}{e^2} \sim 10^{17}$  for  $e^-$ ,  $M_\odot$  BH.

$$\Delta d \approx m^{-1} N_{\rm BH} \left(\frac{e^2}{mr_s}\right)$$



- Amplify using many black holes.
- This setup is our main focus.
- Pairs of black holes prevent curving.
- Note: Absurd. Shows how hard  $\Delta d > m^{-1}$  is.
- $N_{\rm BH} \sim \frac{mr_s}{e^2} \sim 10^{17}$  for  $e^-$ ,  $M_\odot$  BH.



- Amplify using many black holes.
- This setup is our main focus.
- Pairs of black holes prevent curving.
- Note: Absurd. Shows how hard  $\Delta d > m^{-1}$  is.
- $N_{
  m BH}\sim rac{mr_s}{e^2}\sim 10^{17}$  for  $e^-$ ,  $M_\odot$  BH.

### Preventing Collapse: Majumdar-Papapetrou Solutions

- We need to stop ladder from collapsing.
- Use many charged, extremal Reissner-Nordstrom black holes.



• An exact, classical solution of *pure* Einstein-Maxwell (no *e*<sup>-</sup>'s!).

• GR attraction and EM repulsion perfectly balanced,  $Q = M/M_{pl}\sqrt{2}$ .

### Preventing Collapse?



- If tunnel is stable, unbounded superluminality.
- Seems crazy.
- What happens?

# The Punchline: Collapse Just In Time

 $\Delta d_{\rm max} \approx e \times m^{-1}$ 



- No longer an exact solution with  $e^{-1}$ 's.  $\mathcal{L} = M_{\rho l}^2 R - \frac{1}{4e^2} F_{\mu\nu}^2 + \frac{c_2}{m^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} \dots$
- Background forces cancel.
- But, corrections destabilize setup: collapse.
- Tunnel collapses before  $\Delta d > m^{-1}$  achieved.
- Lots of interesting physics in details.

#### Finding Perturbative BH Solutions (Duff, 1973)

- Goal: Find perturbative corrections to  $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ .
- Feynman diagrams are excellent for this purpose.
- Allow for easy estimates of contributions. E.g. Schwarzschild:



Summing tree diagrams ↔ solving EOM perturbatively.

Garrett Goon (Amsterdam)

### Keeping Corrections Small

• Diagrams help ensure corrections are small. Keep us within EFT.



- Extremal RN BHs must be of minimum size to be within EFT.
- Schwinger pair production is becoming important (Gibbons, 1975).
- Funny numerology: for SM  $M_{\rm min} \sim \mathcal{O}(10^5 M_{\odot})$ .

### Missing Physics

- Diagrams also help avoid making mistakes by missing physics.
- For example, could solve EOM perturbatively using:

$$\mathcal{L} = M_{pl}^2 R - \frac{1}{4e^2} F_{\mu\nu}^2 + \frac{c_1}{m^4} F_{\mu\nu}^4 + \frac{c_2}{m^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$$

• Equivalent to summing all *tree* diagrams.



### The Mistake: No Massless Loops

• Recall: EFT operators come from loops of  $e^{-1}$ 's.



• Why don't we include photon, graviton loops, too?



- These need to be included. Give important effects.
- Expect light loops dominate at large distances.
- Diagrams make it clear these should be calculated.

# Quantum Gravity?

- Graviton loops  $\implies$  quantum gravity  $\implies$  scary?
- No. Low energy predictions extractable. (Duff, 1974)(Donoghue, 1993)
- GR+corrections is an entirely reasonable, low energy EFT.
- It's the UV completion we don't understand.

### Quantum Gravity!

$$S = \int d^4x \sqrt{-g} \left[ M_{pl}^2 R + c_1 R^2 + c_2 R_{\mu\nu}^2 + \frac{c_3}{M_{pl}^2} R^3 + \dots \right]$$

Include all possible operators in EFT.

$$p \longrightarrow p \longrightarrow \Sigma \sim \frac{1}{\epsilon} p^4 + p^4 \ln p^2 / \mu^2$$

- ${\it R}^2$  ,  ${\it R}^2_{\mu\nu}$  counterterms absorb  $1/\epsilon$  ,  $\ln\mu$  determines  $\beta$  functions.
- No local counterterms affects  $p^4 \ln p^2$ . Non-analyticity the key.
- Equivalently:  $p^4 \ln p^2$  bit independent of whatever UV completes GR.

• Generates 
$$\delta g_{tt} \sim \left(\frac{r_s}{r}\right) \left(\frac{1}{M_{pl}r}\right)^2$$
 attractive potential. (Duff, Donoghue)  
Garrett Goon (Amsterdam)

### Necessity of Light Loops 1

- Need the loops. Can't just solve EOM.
- Without loops, the dominant corrections are:



### Necessity of Light Loops 2

- Loops enter at *exactly* right scale to keep attraction.
- With loops, potential between BHs is attractive at all distances.



• Makes an important, qualitative difference in the behavior.

# Total Time Advance

 $\Delta d_{\rm max} \approx e \times m^{-1}$ 



- Back to the punchline.
- Given  $e^-$  induced potentials, calculate forces.
- Evaluate  $\gamma_{\rm QED}{\rm 's}$  propagation speed along path.
- Summing up:  $\Delta d_{\max} \approx e \times m^{-1} < m^{-1}$ .
- No macroscopic superluminality.

# Quick Sketch

• Photon's speed: 
$$\delta c_s \sim \frac{e^2}{m^2} R_{\mu\nu\rho\sigma} \sim \frac{e^2}{m^2} \frac{r_s}{r^3}$$
  
• All  $\sim (F_{\mu\nu})^n$  effects on  $c_s$  cancel by symmetries.  
• Focus on  $r \gtrsim r_s \left(\frac{eM_{pl}}{m}\right)^2$  where light loops dominate.  
• Here,  $\left(\frac{dr}{dt}\right)^2 \sim \frac{r_s}{r} \left(\frac{1}{M_{pl}r}\right)^2$   
•  $\Delta d \sim \int_0^{t_f} dt \, \delta c_s \sim e^2 \frac{M_{pl}}{m^2} \sqrt{\frac{r_s}{r}} \Big|_{\infty}^{r_s(eM_{pl}/m)^2} \sim e \times m^{-1}$ 

# QED Summary & Galileons/DGP/mGR

- One black hole only leads to tiny superluminality,  $\Delta d \ll m^{-1}$ .
- Highly elaborate, contrived construction needed to amplify effect.
- Despite efforts, never achieved  $\Delta d > m^{-1}$ . Parametrically smaller.
- Very non-trivial conspiracy. Supports  $m^{-1}$  as correct measure.
- QED and modified GR qualitatively different, apparently.

#### Other Possibilities: Overcharging

- Can also work with new features of QED black holes.
- Find near horizon  $\mathcal{O}(\hbar)$  corrections to all orders in  $r_s/r$ .
- For example, for previously extremal RN black hole  $(\lambda \equiv eM_{pl}/m)$ :  $g_{tt} = -\Delta + \frac{\lambda^4 l_p^2 r_s^4 \hbar}{7200 \pi^2 r^6} + \frac{\lambda^2 l_p^2 r_s^4 \hbar}{9600 \pi^2 r^6} + \frac{\lambda^2 l_p^2 r_s^3 \hbar}{2880 \pi^2 r^5} - \frac{\lambda^2 l_p^2 r_s^2 \hbar}{360 \pi^2 r^4}$   $g_{rr} = \Delta^{-1} + \Delta^{-2} \left[ \frac{\lambda^4 l_p^2 r_s^4 \hbar}{7200 \pi^2 r^6} - \frac{13 \lambda^2 l_p^2 r_s^4 \hbar}{7200 \pi^2 r^6} + \frac{23 \lambda^2 l_p^2 r_s^3 \hbar}{2880 \pi^2 r^5} - \frac{\lambda^2 l_p^2 r_s^2 \hbar}{96 \pi^2 r^4} \right]$  $\lambda \equiv \frac{eM_{pl}}{m}$ ,  $\Delta = (1 - r_s/2r)^2$

• New feature: Black holes can carry more charge  $Q \leq \frac{M}{\sqrt{2}M_p} + \frac{8\sqrt{2}\lambda^4 M_p \hbar}{225M} - \frac{8\sqrt{2}\lambda^2 M_p \hbar}{75M}.$ 

• Attempts to balance forces still generate  $\Delta d \sim e imes m^{-1}$ .

Garrett Goon (Amsterdam)

### Other QED Protections: Rotating Polarizations

- More extreme setups? Infinite lattice?
- Non-minimal couplings cause polarization to rotate during flight.
- Geometric Optics:  $\delta A_{\mu} = (a_{\mu} + \epsilon b_{\mu} + \ldots)e^{i\theta/\epsilon}$ ,  $k_{\mu} \equiv \nabla_{\mu}\theta$ .
- $\mathcal{O}(\epsilon^{-2})$ :  $k_{\mu}k_{\nu}\bar{g}^{\mu\nu} = 8c_2e^2m^{-2}R_{\mu\nu\rho\sigma}k^{\mu}f^{\nu}k^{\rho}f^{\sigma}$ ,  $f_{\mu} \propto a_{\mu}$
- $\mathcal{O}(\epsilon^{-1})$ :  $k^{\mu} \nabla_{\mu} f_{\nu} = \prod_{\nu}{}^{\mu} S_{\mu} \sim \mathcal{O}\left((\frac{e}{mr_s})^2\right)$
- Miniscule effect, but can build up. Will tend to wash out effects.

### Conclusions

- Any EFT superluminality should be compared to  $\Lambda_{\rm EFT}^{-1}$ .
- Seems to distinguish superluminality in QED and modified GR.
- Very problematic for DGP/mGR/Galileons.
- QED protects itself from superluminality in non-trivial way.
- Great EFT application: integrating out matter, EFT of GR...
- Future: BH phenomenology, Weak Gravity Conjecture ( $eM_{pl}/m > 1$ ), graviton propagation, etc.



# Thank you for listening!